Modelling 1 &, O

nformatik
SUMMER TERM 2020 i

\\
N

A,

! Y

\ 7

“&&‘:ﬂ’l’"’% /
*?!“:“.:f.:ff/’q'

LECTURE 17

MDS and Dual PCA

Michael Wand - Institut fur Informatik - Michael.Wand@uni-mainz.de

A Story about Dual Spaces

Singular value decomposition

VT
A U D
ololojofo]oO
—_ 0|o2|(0|0]|]0f0O
JERNERE
0jlolo|a]o]o
\)
Y \
Y
orthogonal

orthogonal

PCA and MDS

Task: Reconstruct from Distances

Given:
= Pairwise distances between n points

Dz(... dist(x;,%;))

= Points themselves (x4, ..., X,;) are not known!

Task:

= Compute (X4, ..., Xp,)

Rough Steps

Classic Multidimensional Scaling (MDS)

= Convert distance matrix into matrix of pairwise scalar
products:

G = ((x;,%;)) =XTX, X-= <X|1 x|n>
| |

= Take “square root” of G

(Recap from #2)

Square roots of SPD matrices

= Symmetric positive definite (“SPD") matrix G
= Symmetric
= All eigenvalues positive

= G can be written as square of another matrix

G =upuT = (uvD) - (VD uT)

9% 9% \/A_l
VG =U

N

More Details

Notation

Data matrix

| |
X = (fil - X, | d-dimensional input vectors X, ..., X
| |

Centered data matrix .
%% Spaltenindex
- // Zellenindex
Z?=1 ii,l %Z?=1ii,1
1@n 1an

— X; — X;
nlllTL nllln

X(1-2117)

MDS

Multi-Dimensional Scaling
= Input: n X n pairwise distances d; ; —» matrix D

= Compute “Gram matrix”
= Pairwise scalar product matrix of centered vectors

1 ~ 1
G= (I——IIT)D(I——].IT)
n n

= Explanation L — =
G = X'X (PCA: XXT)

- (X-%)(X-X)

MDS (2)

Multi-Dimensional Scaling
= Next: Compute eigenstructure of G = X'X
G = VAV < known!
= Compareto
X = UxAx V¥ = G = VxASVE «— unknown!
= This means, we get:
Vx =Ve, Ax=4Ag
= Hence: Reconstruction approach

— T
The Gram-matrix (s X = (\/ AG)VG «—— known!

invariant under orthogonal

: [up t bit
transformations of the x; equal up to an aroitrary

rotation/reflection (U, remains unknown)

MDS (3)

Multi-Dimensional Scaling

- choosing “main axes” as coordinates
= Reconstruction / (see next slide; defined up to order/reflection)

X = (YA

= Distance-preserving embedding
X; = (\/A_lv(i), ,\/A_nvr(li))

~ (VA o BV D) (ke <)
A\\ the rows of V,,

diagonal entries of A,

MDS (4)

Properties: MDS with Euclidian distances

= Recovers points
= Up to global translation
= Up to orthogonal mapping

= Reduced version (k-dim.)
= Preserves distances in a least square sense
= Dimensionality reduction)

= MDS is the dual of PCA

= Result is the same:

—- MDS of distance matrix

— PCA embedding centered point coordinates
= Details: next slide

MDS 1s PCA

SVD of Centered Data Matrix
A
X=UAVT =U vT
/lmin(d,n)

Equivalence of MDS and PCA
pca: S = XXT = UAa2uT

MDS: G = XTX = VA2VYT If we know X, we can compute U, too!
Not possible from distances/scalar-prod. only.

PCA: emb (X) = UT'x I
rea — XT =vVAUT = UTX = AVT
wDs: emb,,p<(X) = AVT

So Where Is the

PCA
input points
. dxd eigenvalue problem
complexity (low dim., large data sets)
data embedding,
result principal variances,
principal axes (“U")
subspace can easily embed
projection additional vectors

Difference?

MDS

pair-wise distances /
scalar products

n xn eigenvalue problem
(high dim., small data sets)

data embedding,
principal variances,
no principal axes”

not obvious
(yes: Nystrom method)

*) Unless we know the original data X.

Nystrom Projection

Embedding further Vectors

= Recompute everything
= EXpensive
= Inconsistent for some applications (new coordinates)

= “Nystrom Formula”

= Compute embedding by linear combination of
computed eigenvectors

= Uses projections on input data set (scalar products only)

= Assumes knowledge of point positions
(later: measure distances only)

Nystrom Projection

Nystrom Projection
= Reminder: X = UAVT G =X'X=vVA%VT
embMDs(X) — AVT emprA(X) — UTX
= Project vector x on principal axes u, ..., u,:

emb(x) = UTx

— (VZA_lxm X = UAvT
1 _
/zT”i,1<Xi,x)\ = U = XVA™!
=" = Ul = vIA~IXT

\Z%W,n(xi»x)/
i=1 "

Kernel PCA

Support Vector Machines

training set separating hyperplane,
minimal penetration
of margin (Ly)

Kernel Support Vector Machine

Example Mapping:

I..J
nl.l'
b': .I a,
" ..‘ . l.lﬂ-'l o fm
ST R
_‘-:1 _.::‘ n 5::.
a = b. .:i
:.{- . .: 1] .*I
L] . - o
b .= nE
n Bn H‘-‘ - TR o
) " Co 1O S
] - " L]
e 4
ki, .

original space

“feature space”
. R* > R”
(x,5) > (2, 23, 5%)

Kernel PCA

“Kernel PCA is classical scaling in feature space”
[Williams 2002]

Main ldea:

= MDS can be easily "kernelized” — just replace scalar
oroduct matrix G with kernel matrix

= No need to deal with feature space explicitly (which
might be intractable)

= Will yield PCA anyway (but no eigenvectors)

Kernel PCA

Summary:

= Kernel PCA performs PCA/MDS in feature space using
dot products (i.e. kernel evaluations) only

= |t gives the same result as MDS

Kernel PCA

Remarks:

= Unlike “real” PCA, it does not output principal axes
vectors
= They are in feature space, i.e. usually inaccessible

= Preimages in (low-dim.) input space do not need to exist
(there are approximation techniques)

= Even if so, they are difficult to compute...
...and the space is non-linear anyway
(so they do not really help)

Kernel PCA

Complexity:
= Need to solve nxn eigenvalue problem
= Memory, Time: Q(n?)

= Does not scale for large data sets
= Can use approximation techniques
= |dea: Landmark MDS

= Compute embedding on small subset of landmark points
(e.g. random subset)

= Use Nystrom formula to embed other points

Examples

The (In)famous Swiss Roll?

exp.
kernel
c=0.30D

exp.
kernel
c=0.35D

the roll

exp.
kernel

o =0.35D
(centered)

poly.-
kernel
(5th order)

c=0.35D

What Else Can You Do?

Image Denoising via PCA:

[!_(] Form

Eigenvect. 1

Eigenvect 2:

Eigenvect 2:

Load... | [Calc If;' pca ¢ MDS ¢ SI-MDS [~ Dense Mum Evs. |3 E [" outputBvs. [~ Cluster Ev's num dusters: |4 = dense-mult: |1 E‘

shiftTest | X |1El Hw |1El = scale: |1rDDUDﬂ Palar Transform Testl Conv, Test I Corw.TestZl

Load... [@ pcA (" densePcA (C MDS { test Num Evs. |3 3‘ I OutputEvs. W Cluster Ev's

What Else Can You Do?

Does not work without correspondences:

Form

| Load... ;[Cac | @ pca wDs

[shiffest |x:[10 [2v:[w0 [2

1 5 i

{ Fourier Descr. Test | descr. diameter | 5 1L:7

=

I

2
I Ii
x

Eigenvect. 1

Eigenvect 2:

Eigenvect 2:

[a

SI-MDS v'| Dense RotInv Brute For NumEvs. | 3 12 Output E Cluster E' num clusters: | 4 [L$ dense-mult: | 1

|w

| Scale: | 1,0000 ‘:* |Po]ar Transform Test] l Conv. Test: Compare I | Comp. Match l iConv. Test: Al Rot] ‘Conv. Test: Vizf

normalize

What Else Can You Do?

Shift invariant comparison kernel:

shifiest | x: [10 2 v [0 = seale: [o,90 =

X

Mean:
Image
Eigenvect. 1
Image
Eigenvect 2:
Image
Eigenvect 2:

Image

I PcA DS @ SIMDS [Dense NumEvs. = T outputevs. [ClusterEvs numclusters: [=] densemuit: [5 =

Load... ” Calc I(" PCA (" MD5 % SI-MDS

ShiftTest |x: Jio Hv o 2 scale: [0 2

I~ Dense Mum Evs. |3 5‘ I” OutputEvs. | Cluster Ev's num dusters: |4 5 dense-mult: IS 5‘

2]

Mean:
Image
Eigenvect. 1
Image
Eigenvect 2:
Image
Eigenvect 2:

Image

MDS (Kernel PCA

Shift invariant comparison kernel:

" I

21

Mean:
Image
Eigenwect. 1
Image
Eigenwvect 2:
Image
Eigenvect 2:
Image

Load... ” Calc I(‘ PcA { Mps % SIMDS ™ Dense Num Evs, |3 5‘ [~ OutputEvs. [Cluster Ev's num dusters: |4 E‘ dense-mult: Il 5‘
ShiftTest | %1 Hw|w A sak|Ln

21

Mean

Image
Eigenvect. 1
Image
Eigenvect 2:
Image
Eigenvect 2:

Image

 PCA { MDS & SI-MDS I™ Dense | Rotlnv Mum Evs. |3 5‘ I™ Output Evs. [~ Cluster Ev's num clusters: |4 3‘ dense-mult: |5 5‘
= Seak |

=] Polar Transfom Test | Conv. Test: Compare| Comp. Match | Conv. Test: Al Rot | Conv. Test: viz |

Co-Occurrence Clustering

Co-Occurrence Clustering

input image correspondence maps clustering

Spectral Clustering

...

* @

A

Co-occurrence embedding

Embedding

MDS / Kernel PCA References

B. Schaolkopf, A. J. Smola, K.-R. Miiller: Nonlinear Component Analysis as a Kernel
Eigenvalue Problem. In: Neural Computation, 10:1299-1319, 1998.

B. Scholkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Miiller, G. Ratsch, A. J. Smola: Input
Space versus Feature Space in Kernel-Based Methods. In: IEEE Trans. on Neural Networks,
10:1000-1017, 1999.

C. Williams: On a Connection between Kernel PCA and Metric Multidimensional Scaling. In:
Machine Learning, 46:11-19, 2002.

K.-R. Miiller, S. Mika, G. Ratsch, K. Tsuda, B. Scholkopf: An Introduction to Kernel-Based
Learning Algorithms. In: IEEE Trans. on Neural Networks, 12:181-201, 2001.

J. Shawe-Taylor, N. Cristianini: Kernel Methods for Pattern Analysis. Cambridge University
Press, 2004.

T. Cox, M. Cox: Multi-Dimensional Scaling. Chapman & Hall, 1994.

Matrix Factorization and
Recommender Systems

Matrix Factorization

40
A U D
oloflofo]o]oO
_ 0|o|0]0]o0]0O
. 0]o|o|o]o]o0
0|00 |os| 0|0
\ v J N
orthogonal orthngonal

Key ingredient: Spectral factorization
= Requires dense matrix A

= Low-rank approximations: Largest g; only

L ow-Rank Factorization

U D VT
agloflojofo]o
_ 0||of[0]o]fo0
olofo|o|lo]|o
ojlojofo]o]o
\
Y
orthogonal

orthogonal

Recommender Systems

Example: Movie recommendations

o A U D A
L o|{ofofo]o]oO
S) _ 0|o2[0]0]0]O
s 0|ol0lo0|o0]o0
N
S U~ ojlofofo]o]o
T \)\ AN J o\ J
Y Y Y Y
10M users movie-space user-space basis
basis
on average 20 people’s taste
‘likes” per user is highly correlated
score € [0,1] — low-dimensional

subspace

Sparse Matrix Factorization

VT

A U D
o{ofofo]o0]oO
_ 0|o|0|0]|0]0O
B A ERRE
010|0fos]0(0
\ Yy J
orthogonal

Key ingredient: Spectral factorization
- Objective ||A — UDVT||’

= Approximation only (optimum NP-hard)
= Popular: Alternating least-squares

Y
orthogonal

Kernel PCA
(& Kernel Learning)

Example: Support Vector Machine

labeled sample

reconstructed density,
decision rule

. 2
.-h:'
b.: - 3
II.‘ .: " ‘f -l a"m
S Y
g3 ey
af "y .-
o - "
s " hl. *.‘
:.{- . ol =
lh‘.. _=-=- " :
R WA
H s " '-...ﬂ g i
F L] L] n
L "

e

original space “feature space”

Example Mapping: R? —» R®
(x,y) > (x%,xy,y%)

“The Kernel Trick”

Observation:

= Many data analysis algorithms can be expressed in
terms of scalar products only

= Scalar products (¢ (x), ¢(v)) can sometimes be
computed efficiently, without explicit mapping

= “Kernel trick™: replace standard scalar product with
kernel function:

(p(x),d(v)) = k(x,v)

“The Kernel Trick”

original
space
OQ ___________
k(x,y) oY |
tractable

dimensionality
(typ. 10D - 100D)

-

feature
space

S~

N ¢(X)

(¢ (x), ¢(\ b ()

(typ. 107°D -

intractable
dimensionality

infD)

Kernels Design

Kernel Design
= Converting ¢ — k(-, -) isdifficult

= Other way round:
choose k(-, -) that correspond to useful ¢

Mercer kernels

= Conditions for valid kernels
= Eigenfunctions of positive, symmetric kernels

= Sufficient:

= Finite positivity property —
Any matrix of pairwise scalar products of finite point sets is
symmetric positive definite

Standard Kernels

Polynomial Kernel
" k(x,y)=(x - y+1)

= Corresponds to multivariate monomials
up to degree d

Exponential Kernel
= k(x,y) = exp(—||x — y[|/2c?)

= Corresponds to infinite dimensional
feature space

General Scheme for Kernel Algorithms

®_ o
’..

@
@
..0

input points X, ..., X,

d

information bottleneck

(k(xl,xl) k(xn,xl)w

| : : |

Lk(xl,xn) k(xn,xn)J
Gram matrix

(pairwise scalar products)

(c.f. Johnson-Lindenstrauss Lemma: pairwise distances
provide less information than vectors themselves)

Kernel Algorithms

N

o
o
o
-

kernel algorithms

High-Dimensional Spaces are Weird

How Much Information
IS Contained in Pairwise
Distances?

Higher Dimensions are Weira

Issues with High-Dimensional Spaces :

= d-dimensional space:
d independent neighboring
directions to each point

= Volume-distance ratio explodes

—: @ @ vol(r) € O(rd)
d=2 d=3 d — o0

d=1

Higher Dimensions are Weira

More Weird Effects:

= Dart-throwing anomaly |

- Normal distributions ||
gather prob.-mass
in thin shells

= [Bishop 95]

= Nearest neighbor ~ farthest neighbor
= For unstructured points (e.g. iid-random)
= Not true for certain classes of structured data
= [Beyer et al. 99]

Johnson-Lindenstrauss Lemma

JL-Lemma: [Dasgupta et al. 99]
= Pointset Pin RY, n := #P

= Thereisf:R?— RY, ke O(¢?Inn)
(k> 4(e2/2 — £3/3) 7 Inn)

= _that preserves all inter-point distances
up to a factor of (1+¢)

Random orthogonal linear projection
= Works with probability > (1-1/n)

This means...

What Does the JL-Lemma Imply?

Pairwise distances in small point set P
(sub-exponential in d)
can be well-preserved in low-dimensional embedding

What does it not say?

Does not imply that the points themselves are well-
represented (just the pairwise distances)

Experiment

dimensionality reduction

80%
—&— max. dist. error
70%
—— max. rek. error
M —_
? 60% §.
- o
et |-
Q 0, —
..‘% 50% qc,
@ 9
,;:, 40% g
° 30% 6
(3] Q
§ o
% 20% =
10%
0%
0 20 40 60 80 100

embedding dimension (90 vects in 100 dim orig space)

Intuition

Difference Vectors /‘wﬁ
= Normalize (relative error u
(at e e O) bv/

= Pole yields bad approximation

= Non-pole area much /
arger (high dimension) wff \

= Need large number good prj. bad prj.

of poles (exponential in d)

no-go area
v
good prj.

