
Modelling 1
SUMMER TERM 2020

LECTURE 17

MDS and Dual PCA
Michael Wand · Institut für Informatik · Michael.Wand@uni-mainz.de

Informatik

Institut

für



Σ



σ1
σ2

A U D

VT

A Story about Dual Spaces

Singular value decomposition

1

2

3

4

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

0 0

0 0 0

=

orthogonal orthogonal

PCA and MDS

Task: Reconstruct from Distances

Given:

▪ Pairwise distances between n points

𝐃 =
⋱ ⋰

𝑑𝑖𝑠𝑡 𝐱𝑖 , 𝐱𝑗
⋰ ⋱

▪ Points themselves (𝐱1, … , 𝐱𝑛) are not known!

Task:

▪ Compute (𝐱1, … , 𝐱𝑛)

Rough Steps

Classic Multidimensional Scaling (MDS)

▪ Convert distance matrix into matrix of pairwise scalar
products:

𝐆 =
⋱ ⋰

𝐱𝑖 , 𝐱𝑗
⋰ ⋱

= 𝐗T𝐗, 𝐗 =
| |
𝐱1 ⋯ 𝐱𝑛
| |

▪ Take “square root” of 𝐆

𝐗 =
| |
𝐱1 ⋯ 𝐱𝑛
| |

= 𝐆

(Recap from #2)

Square roots of SPD matrices

▪ Symmetric positive definite (“SPD”) matrix 𝐆

▪ Symmetric

▪ All eigenvalues positive

▪ 𝐆 can be written as square of another matrix

𝐆 = 𝐔𝐃𝐔T = 𝐔 𝑫 ⋅ 𝑫
T
𝐔T

𝐆 = 𝐔

𝜆1
⋱

𝜆1

” ”

More Details

Notation

Data matrix

Centered data matrix

d-dimensional input vectors ෤𝐱1, … , ෤𝐱𝑛෩𝐗 =

| |
෤𝐱1 ⋯ ෤𝐱𝑛
| |

𝐗 = ෩𝐗 − ഥ𝐗

= ෩𝐗 −

1

𝑛
σ𝑖=1
𝑛 ෤𝐱𝑖,1

1

𝑛
σ𝑖=1
𝑛 ෤𝐱𝑖,1

⋮ ⋯ ⋮
1

𝑛
σ𝑖=1
𝑛 ෤𝐱𝑖,𝑛

1

𝑛
σ𝑖=1
𝑛 ෤𝐱𝑖,𝑛

= ෩𝐗 𝐈 −
1

𝑛
𝟏𝟏𝑇

Spaltenindex
Zeilenindex

MDS

Multi-Dimensional Scaling

▪ Input: 𝑛 × 𝑛 pairwise distances 𝑑𝑖,𝑗 → matrix D

▪ Compute “Gram matrix”

▪ Pairwise scalar product matrix of centered vectors

▪ Explanation
(PCA: XXT)

෩𝐃 = −
1

2
𝑑𝑖,𝑗

2

𝑖,𝑗

𝐆 = 𝐈 −
1

𝑛
𝟏𝟏𝑇 ෩𝐃 𝐈 −

1

𝑛
𝟏𝟏𝑇

𝐆 = 𝐗𝑇𝐗

= ෩𝐗 − ഥ𝐗
𝑇 ෩𝐗 − ഥ𝐗

MDS (2)

Multi-Dimensional Scaling

▪ Next: Compute eigenstructure of 𝐆 = 𝐗𝑇𝐗

𝐆 = 𝐕𝐆𝚲𝐆𝐕𝐆
𝑇

▪ Compare to

𝐗 = 𝐔𝐗𝚲𝐗𝐕𝐗
𝑇 → 𝐆 = 𝐕𝐗𝚲𝐗

2𝐕𝐗
𝑇

▪ This means, we get:

𝐕𝐗 = 𝐕𝐆, 𝚲𝐗 = 𝚲𝐆

▪ Hence: Reconstruction approach

𝐗 ≡ 𝚲𝐆 𝐕𝐆
𝑇

known!

unknown!

known!

equal up to an arbitrary
rotation/reflection (Ux remains unknown)

The Gram-matrix is
invariant under orthogonal
transformations of the xi

MDS (3)

Multi-Dimensional Scaling

▪ Reconstruction

𝐗 ≔ 𝚲𝐆 𝐕𝐆
𝑇

▪ Distance-preserving embedding

𝐱𝑖 = 𝜆1𝐯1
𝑖
, . . … . . , 𝜆𝑛𝐯n

𝑖

≈ 𝜆1𝐯1
𝑖
, … , 𝜆𝑘𝐯𝑘

𝑖
(𝑘 ≤ 𝑛)

the rows of VG,
diagonal entries of ΛG

choosing “main axes” as coordinates
(see next slide; defined up to order/reflection)

MDS (4)

Properties: MDS with Euclidian distances

▪ Recovers points

▪ Up to global translation

▪ Up to orthogonal mapping

▪ Reduced version (k-dim.)

▪ Preserves distances in a least square sense

▪ Dimensionality reduction)

▪ MDS is the dual of PCA

▪ Result is the same:

– MDS of distance matrix

– PCA embedding centered point coordinates

▪ Details: next slide

SVD of Centered Data Matrix

MDS is PCA

Equivalence of MDS and PCA

PCA:

MDS:

PCA:

MDS:

𝐗 = 𝐔𝚲𝐕𝑇 = 𝐔

𝜆1
⋱

𝜆min(𝑑,𝑛)

𝐕𝑇

𝐒 = 𝐗𝐗𝑇 = 𝐔𝚲2𝐔𝑇

𝐆 = 𝐗𝑇𝐗 = 𝐕𝚲2𝐕𝑇

𝑒𝑚𝑏𝑃𝐶𝐴 𝐗 = 𝐔𝑇𝐗

𝑒𝑚𝑏𝑀𝐷𝑆 𝐗 = 𝚲𝐕𝑇
𝐗𝑇 = 𝐕𝚲𝐔𝑇 ⇒ 𝐔𝑇𝐗 = 𝚲𝐕𝑇

If we know X, we can compute U, too!
Not possible from distances/scalar-prod. only.

So Where is the Difference?

PCA MDS

input points
pair-wise distances /

scalar products

complexity
dd eigenvalue problem

(low dim., large data sets)

n n eigenvalue problem
(high dim., small data sets)

result

data embedding,

principal variances,

principal axes (“U”)

data embedding,

principal variances,

no principal axes*)

subspace

projection

can easily embed
additional vectors

not obvious
(yes: Nyström method)

*) Unless we know the original data X.

Nyström Projection

Embedding further Vectors

▪ Recompute everything

▪ Expensive

▪ Inconsistent for some applications (new coordinates)

▪ “Nyström Formula”

▪ Compute embedding by linear combination of
computed eigenvectors

▪ Uses projections on input data set (scalar products only)

▪ Assumes knowledge of point positions
(later: measure distances only)

Nyström Projection

Nyström Projection

▪ Reminder:

▪ Project vector 𝐱 on principal axes 𝐮1, … , 𝐮𝑑:

𝐗 = 𝐔𝚲𝐕𝑇 𝐆 = 𝐗𝑇𝐗 = 𝐕𝚲2𝐕𝑇

𝑒𝑚𝑏𝑃𝐶𝐴 𝐗 = 𝐔𝑇𝐗𝑒𝑚𝑏𝑀𝐷𝑆 𝐗 = 𝚲𝐕𝑇

𝑒𝑚𝑏 𝐱 = 𝐔𝑇𝐱
= 𝐕𝑇𝚲−1𝐗𝑇 𝐱

=

෍

𝑖=1

𝑛
1

𝜆1
𝑣𝑖,1⟨𝐱𝑖 , 𝐱⟩

⋮

෍

𝑖=1

𝑛
1

𝜆𝑛
𝑣𝑖,𝑛⟨𝐱𝑖 , 𝐱⟩

𝐗 = 𝐔𝚲𝐕𝑇

⇒ 𝐔 = 𝐗𝐕𝚲−1

⇒ 𝐔𝑇 = 𝐕𝑇𝚲−1𝐗𝑇

Kernel PCA

Support Vector Machines

separating hyperplane,

minimal penetration

of margin (L1)

training set

Kernel Support Vector Machine

Example Mapping:

() ()22 ,,, yxyxyx 

  →

original space “feature space”

Kernel PCA

“Kernel PCA is classical scaling in feature space”
[Williams 2002]

Main Idea:

▪ MDS can be easily “kernelized” – just replace scalar
product matrix G with kernel matrix

▪ No need to deal with feature space explicitly (which
might be intractable)

▪ Will yield PCA anyway (but no eigenvectors)

Kernel PCA

Summary:

▪ Kernel PCA performs PCA/MDS in feature space using
dot products (i.e. kernel evaluations) only

▪ It gives the same result as MDS

Kernel PCA

Remarks:

▪ Unlike “real” PCA, it does not output principal axes
vectors

▪ They are in feature space, i.e. usually inaccessible

▪ Preimages in (low-dim.) input space do not need to exist
(there are approximation techniques)

▪ Even if so, they are difficult to compute...
...and the space is non-linear anyway
(so they do not really help)

Kernel PCA

Complexity:

▪ Need to solve nn eigenvalue problem

▪ Memory, Time: (n2)

▪ Does not scale for large data sets

▪ Can use approximation techniques

▪ Idea: Landmark MDS

▪ Compute embedding on small subset of landmark points
(e.g. random subset)

▪ Use Nyström formula to embed other points

Examples

The (In)famous Swiss Roll?

the roll

exp.
kernel
 = 0.30D

exp.
kernel
 = 0.35D

exp.
kernel
 = 0.35D
(centered)

poly.-
kernel
(5th order)
 = 0.35D

What Else Can You Do?

Image Denoising via PCA:

What Else Can You Do?

Does not work without correspondences:

What Else Can You Do?

Shift invariant comparison kernel:

MDS (Kernel PCA)

Shift invariant comparison kernel:

Co-Occurrence Clustering

3D point clouds

[Chuan Li et al., 3DV 2015]

Co-Occurrence Clustering

Embedding

Spectral Clustering

Co-occurrence embedding

Input image

MDS / Kernel PCA References

B. Schölkopf, A. J. Smola, K.-R. Müller: Nonlinear Component Analysis as a Kernel
Eigenvalue Problem. In: Neural Computation, 10:1299-1319, 1998.

B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Müller, G. Ratsch, A. J. Smola: Input
Space versus Feature Space in Kernel-Based Methods. In: IEEE Trans. on Neural Networks,
10:1000-1017, 1999.

C. Williams: On a Connection between Kernel PCA and Metric Multidimensional Scaling. In:
Machine Learning, 46:11-19, 2002.

K.-R. Müller, S. Mika, G. Ratsch, K. Tsuda, B. Schölkopf: An Introduction to Kernel-Based
Learning Algorithms. In: IEEE Trans. on Neural Networks, 12:181-201, 2001.

J. Shawe-Taylor, N. Cristianini: Kernel Methods for Pattern Analysis. Cambridge University
Press, 2004.

T. Cox, M. Cox: Multi-Dimensional Scaling. Chapman & Hall, 1994.

Matrix Factorization and
Recommender Systems

Matrix Factorization

Key ingredient: Spectral factorization

▪ Requires dense matrix A

▪ Low-rank approximations: Largest 𝜎𝑖 only

A U D

VT

1

2

3

4

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

0 0

0 0 0

=

orthogonal orthogonal

Low-Rank Factorization

A U D VT
1

2

0

0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

0 0

0 0 0

=

orthogonal orthogonal

Recommender Systems

Example: Movie recommendations

A U D VT
1

2

0

0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

0 0

0 0 0

=

10M users

1
0

K
 m

o
vi

e
s

on average 20
“likes” per user
score ∈ [0,1]

movie-space
basis

user-space basis

people’s taste
is highly correlated
→ low-dimensional

subspace

Sparse Matrix Factorization

Key ingredient: Spectral factorization

▪ Objective 𝐀 − 𝐔𝐃𝐕T
2

▪ Approximation only (optimum NP-hard)

▪ Popular: Alternating least-squares

U D

VT

1

2

3

4

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

0 0

0 0 0

=

orthogonal orthogonal

A

Kernel PCA
(& Kernel Learning)

reconstructed density,
decision rule

Example: Support Vector Machine

labeled sample

Example

Example Mapping: ℝ2 → ℝ3

𝑥, 𝑦 → (𝑥2, 𝑥𝑦, 𝑦2)

original space “feature space”

“The Kernel Trick”

Observation:

▪ Many data analysis algorithms can be expressed in
terms of scalar products only

▪ Scalar products ⟨𝜙 𝐱 , 𝜙 𝐲 ⟩ can sometimes be
computed efficiently, without explicit mapping

▪ “Kernel trick”: replace standard scalar product with
kernel function:

𝜙 𝐱 ,𝜙 𝐲 = 𝑘 𝐱, 𝐲

𝐱

𝐲𝑘 𝐱, 𝐲

“The Kernel Trick”

feature
space

original
space





tractable
dimensionality

(typ. 10D – 100D)

intractable
dimensionality

(typ. 1010D – inf D)

𝜙 𝐱 , 𝜙 𝐲

𝜙 𝐱

𝜙 𝐲

Kernels Design

Kernel Design
▪ Converting 𝜙 → 𝑘(⋅ , ⋅) is difficult

▪ Other way round:
choose 𝑘(⋅ , ⋅) that correspond to useful𝜙

Mercer kernels

▪ Conditions for valid kernels

▪ Eigenfunctions of positive, symmetric kernels

▪ Sufficient:

▪ Finite positivity property –
Any matrix of pairwise scalar products of finite point sets is
symmetric positive definite

Standard Kernels

Polynomial Kernel

▪ k(x, y) = (x · y + 1)d

▪ Corresponds to multivariate monomials
up to degree d

Exponential Kernel

▪ k(x, y) = exp(− x− y /22)

▪ Corresponds to infinite dimensional
feature space

Kernel Algorithms

General Scheme for Kernel Algorithms

input points x1, ..., xn





















),(),(

),(),(

1

111

nnn

n

xxkxxk

xxkxxk







Gram matrix
(pairwise scalar products) kernel algorithms

information bottleneck

(c.f. Johnson-Lindenstrauss Lemma: pairwise distances
provide less information than vectors themselves)

High-Dimensional Spaces are Weird

How Much Information
is Contained in Pairwise

Distances?

Higher Dimensions are Weird

Issues with High-Dimensional Spaces :

▪ d-dimensional space:
d independent neighboring
directions to each point

▪ Volume-distance ratio explodes

d = 1 d = 2 d = 3 d → 

vol(r)  (r d)

More Weird Effects:

▪ Dart-throwing anomaly

▪ Normal distributions
gather prob.-mass
in thin shells

▪ [Bishop 95]

▪ Nearest neighbor ~ farthest neighbor

▪ For unstructured points (e.g. iid-random)

▪ Not true for certain classes of structured data

▪ [Beyer et al. 99]

Higher Dimensions are Weird

d = 1..200 d = 1..200

Johnson-Lindenstrauss Lemma

JL-Lemma: [Dasgupta et al. 99]

▪ Point set P in ℝd, n ∶= #P

▪ There is f : ℝd → ℝk, k  O( -2 ln n)

(k  4( 2/2 –  3/3)-1 ln n)

▪ …that preserves all inter-point distances

up to a factor of (1 +)

Random orthogonal linear projection

▪ Works with probability  (1-1/n)

This means…

What Does the JL-Lemma Imply?

Pairwise distances in small point set P
(sub-exponential in d)
can be well-preserved in low-dimensional embedding

What does it not say?

Does not imply that the points themselves are well-
represented (just the pairwise distances)

Experiment

Intuition

Difference Vectors

▪ Normalize (relative error)

▪ Pole yields bad approximation

▪ Non-pole area much
larger (high dimension)

▪ Need large number
of poles (exponential in d)

diff

good prj. bad prj.

no-go area

good prj.

u
v

diff

