Modelling 1 SUMMER TERM 2020

LECTURE 17 MDS and Dual PCA

Michael Wand · Institut für Informatik · Michael.Wand@uni-mainz.de

A Story about Dual Spaces

VT

Singular value decomposition

PCA and MDS

Task: Reconstruct from Distances

Given:

Pairwise distances between n points

$$\mathbf{D} = \begin{pmatrix} \ddots & & \ddots \\ & dist(\mathbf{x}_i, \mathbf{x}_j) & \\ \vdots & & \ddots \end{pmatrix}$$

• Points themselves $(\mathbf{x}_1, \dots, \mathbf{x}_n)$ are not known!

Task:

Compute (x₁, ..., x_n)

Rough Steps

Classic Multidimensional Scaling (MDS)

 Convert distance matrix into matrix of pairwise scalar products:

$$\mathbf{G} = \begin{pmatrix} \ddots & \ddots \\ & \langle \mathbf{x}_i, \mathbf{x}_j \rangle \\ \vdots & \ddots \end{pmatrix} = \mathbf{X}^{\mathrm{T}} \mathbf{X}, \qquad \mathbf{X} = \begin{pmatrix} | & | \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ | & | \end{pmatrix}$$

Take "square root" of G

$$\mathbf{X} = \begin{pmatrix} | & | \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ | & | \end{pmatrix} = \sqrt{\mathbf{G}}$$

(Recap from #2)

Square roots of SPD matrices

- Symmetric positive definite ("SPD") matrix G
 - Symmetric
 - All eigenvalues positive
- **G** can be written as square of another matrix $\mathbf{G} = \mathbf{U}\mathbf{D}\mathbf{U}^{\mathrm{T}} = (\mathbf{U}\sqrt{\mathbf{D}}) \cdot (\sqrt{\mathbf{D}}^{\mathrm{T}}\mathbf{U}^{\mathrm{T}})$

$$\sqrt[n]{\mathbf{G}} = \mathbf{U} \begin{pmatrix} \sqrt{\lambda_1} & & \\ & \ddots & \\ & & \sqrt{\lambda_1} \end{pmatrix}$$

More Details

Notation

Data matrix

Centered data matrix $\mathbf{X} = \widetilde{\mathbf{X}} - \overline{\mathbf{X}}$

Spaltenindex Zeilenindex

$$= \widetilde{\mathbf{X}} - \begin{pmatrix} \frac{1}{n} \sum_{i=1}^{n} \widetilde{\mathbf{X}}_{i,1} \\ \vdots \\ \frac{1}{n} \sum_{i=1}^{n} \widetilde{\mathbf{X}}_{i,n} \end{pmatrix} \cdots \begin{pmatrix} \frac{1}{n} \sum_{i=1}^{n} \widetilde{\mathbf{X}}_{i,1} \\ \vdots \\ \frac{1}{n} \sum_{i=1}^{n} \widetilde{\mathbf{X}}_{i,n} \end{pmatrix}$$
$$= \widetilde{\mathbf{X}} \left(\mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^{T} \right)$$

MDS

Multi-Dimensional Scaling

• Input: $n \times n$ pairwise distances $d_{i,j} \rightarrow \text{matrix } \mathbf{D}$

$$\widetilde{\mathbf{D}} = -\frac{1}{2} \left[\left(\mathbf{d}_{i,j} \right)^2 \right]_{i,j}$$

Compute "Gram matrix"

Pairwise scalar product matrix of centered vectors

$$\mathbf{G} = \left(\mathbf{I} - \frac{1}{n}\mathbf{1}\mathbf{1}\mathbf{1}^{T}\right)\mathbf{\widetilde{D}}\left(\mathbf{I} - \frac{1}{n}\mathbf{1}\mathbf{1}^{T}\right)$$

• Explanation

$$\mathbf{G} = \mathbf{X}^{T}\mathbf{X} \qquad (PCA: XX^{T})$$

$$= \left(\mathbf{\widetilde{X}} - \mathbf{\overline{X}}\right)^{T}\left(\mathbf{\widetilde{X}} - \mathbf{\overline{X}}\right)$$

MDS(2)

Multi-Dimensional Scaling

• Next: Compute eigenstructure of $\mathbf{G} = \mathbf{X}^T \mathbf{X}$

$$\mathbf{G} = \mathbf{V}_{\mathbf{G}} \mathbf{\Lambda}_{\mathbf{G}} \mathbf{V}_{\mathbf{G}}^T \longleftarrow known!$$

Compare to

$$\mathbf{X} = \mathbf{U}_{\mathbf{X}} \mathbf{\Lambda}_{\mathbf{X}} \mathbf{V}_{\mathbf{X}}^T \rightarrow \mathbf{G} = \mathbf{V}_{\mathbf{X}} \mathbf{\Lambda}_{\mathbf{X}}^2 \mathbf{V}_{\mathbf{X}}^T \longleftarrow \text{unknown!}$$

This means, we get:

$$V_{\rm X} = V_{\rm G}, \qquad \Lambda_{\rm X} = \sqrt{\Lambda_{\rm G}}$$

Hence: Reconstruction approach

The Gram–matrix is invariant under orthogonal transformations of the x_i

$$\mathbf{X} \equiv \left(\sqrt{\Lambda_{\mathbf{G}}}\right) \mathbf{V}_{\mathbf{G}}^{T} \longleftarrow known!$$

$$\int_{\mathbf{G}} equal \ up \ to \ an \ arbitrary$$

$$rotation/reflection \ (U_{\times} \ remains \ unknown)$$

Multi-Dimensional Scaling

Reconstruction

choosing "main axes" as coordinates
 (see next slide; defined up to order/reflection)

$$\mathbf{X} \stackrel{\checkmark}{\coloneqq} \left(\sqrt{\mathbf{\Lambda}_{\mathbf{G}}} \right) \mathbf{V}_{\mathbf{G}}^{T}$$

Distance-preserving embedding

$$\mathbf{x}_{i} = \left(\sqrt{\lambda_{1}}\mathbf{v}_{1}^{(i)}, \dots, \sqrt{\lambda_{n}}\mathbf{v}_{n}^{(i)}\right)$$

$$\approx \left(\sqrt{\lambda_{1}}\mathbf{v}_{1}^{(i)}, \dots, \sqrt{\lambda_{k}}\mathbf{v}_{k}^{(i)}\right) (k \leq n)$$

$$\stackrel{\text{the rows of } \bigvee_{q}, \\ \text{diagonal entries of } \bigwedge_{q}$$

MDS(4)

Properties: MDS with Euclidian distances

Recovers points

- Up to global translation
- Up to orthogonal mapping
- Reduced version (k-dim.)
 - Preserves distances in a least square sense
 - Dimensionality reduction)
- MDS is the dual of PCA
 - Result is the same:
 - MDS of distance matrix
 - PCA embedding centered point coordinates
 - Details: next slide

MDS is PCA

SVD of Centered Data Matrix

$$\mathbf{X} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^T = \mathbf{U} \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_{\min(d,n)} \end{pmatrix} \mathbf{V}^T$$

Equivalence of MDS and PCA

- PCA: $\mathbf{S} = \mathbf{X}\mathbf{X}^T = \mathbf{U}\mathbf{\Lambda}^2\mathbf{U}^T$
- MDS: $\mathbf{G} = \mathbf{X}^T \mathbf{X} = \mathbf{V} \mathbf{\Lambda}^2 \mathbf{V}^T$

PCA: $emb_{PCA}(\mathbf{X}) = \mathbf{U}^T \mathbf{X}$ MDS: $emb_{MDS}(\mathbf{X}) = \mathbf{\Lambda} \mathbf{V}^T$

If we know X, we can compute U, too! Not possible from distances/scalar-prod. only.

$$\mathbf{X}^T = \mathbf{V}\mathbf{\Lambda}\mathbf{U}^T \Rightarrow \mathbf{U}^T\mathbf{X} \stackrel{\flat}{=} \mathbf{\Lambda}\mathbf{V}^T$$

So Where is the Difference?

PCA

MDS

input	points	<pre>pair-wise distances / scalar products</pre>
complexity	<i>d</i> × <i>d</i> eigenvalue problem (low dim., large data sets)	<i>n</i> × <i>n</i> eigenvalue problem (high dim., small data sets)
result	data embedding, principal variances, principal axes ("U")	data embedding, principal variances, no principal axes ^{*)}
subspace projection	can easily embed additional vectors	not obvious (yes: Nyström method)

*) Unless we know the original data X.

Nyström Projection

Embedding further Vectors

- Recompute everything
 - Expensive
 - Inconsistent for some applications (new coordinates)
- "Nyström Formula"
 - Compute embedding by linear combination of computed eigenvectors
 - Uses projections on input data set (scalar products only)
 - Assumes knowledge of point positions (later: measure distances only)

Nyström Projection

Nyström Projection

• Reminder: $\mathbf{X} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^T$ $\mathbf{G} = \mathbf{X}^T \mathbf{X} = \mathbf{V} \mathbf{\Lambda}^2 \mathbf{V}^T$

 $emb_{MDS}(\mathbf{X}) = \mathbf{\Lambda}\mathbf{V}^T \quad emb_{PCA}(\mathbf{X}) = \mathbf{U}^T\mathbf{X}$

Project vector x on principal axes u₁, ..., u_d:

$$emb(\mathbf{x}) = \mathbf{U}^{T} \mathbf{x}$$

$$= (\mathbf{V}^{T} \mathbf{\Lambda}^{-1} \mathbf{X}^{T}) \mathbf{x}$$

$$X = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{T}$$

$$\Rightarrow \mathbf{U} = \mathbf{X} \mathbf{V} \mathbf{\Lambda}^{-1}$$

$$\Rightarrow \mathbf{U} = \mathbf{X} \mathbf{V} \mathbf{\Lambda}^{-1}$$

$$\Rightarrow \mathbf{U}^{T} = \mathbf{V}^{T} \mathbf{\Lambda}^{-1} \mathbf{X}^{T}$$

Support Vector Machines

training set

separating hyperplane, minimal penetration of margin (L₁)

Kernel Support Vector Machine

Example Mapping:

original space

"feature space"

 $\phi: \mathbb{R}^2 \to \mathbb{R}^3$ $(x, y) \mapsto (x^2, xy, y^2)$

"Kernel PCA is classical scaling in feature space" [Williams 2002]

Main Idea:

- MDS can be easily "kernelized" just replace scalar product matrix G with kernel matrix
- No need to deal with feature space explicitly (which might be intractable)
- Will yield PCA anyway (but no eigenvectors)

Summary:

- Kernel PCA performs PCA/MDS in feature space using dot products (i.e. kernel evaluations) only
- It gives the same result as MDS

Remarks:

- Unlike "real" PCA, it does not output principal axes vectors
 - They are in feature space, i.e. usually inaccessible
 - Preimages in (low-dim.) input space do not need to exist (there are approximation techniques)
 - Even if so, they are difficult to compute...
 ...and the space is non-linear anyway (so they do not really help)

Complexity:

- Need to solve $n \times n$ eigenvalue problem
- Memory, Time: $\Omega(n^2)$
- Does not scale for large data sets
 - Can use approximation techniques
 - Idea: Landmark MDS
 - Compute embedding on small subset of landmark points (e.g. random subset)
 - Use Nyström formula to embed other points

Examples

The (In)famous Swiss Roll?

the roll

 	 the second s			the second se	Contraction of the second second	the second se	the second se	 and the second se					the second s	the second se	the second se	the second se		

What Else Can You Do?

Image Denoising via PCA:

What Else Can You Do?

Does not work without correspondences:

What Else Can You Do?

Shift invariant comparison kernel:

Shift invariant comparison kernel:

Co-Occurrence Clustering

3D point clouds

[Chuan Li et al., 3DV 2015]

Co-Occurrence Clustering

Spectral Clustering

MDS / Kernel PCA References

B. Schölkopf, A. J. Smola, K.-R. Müller: Nonlinear Component Analysis as a Kernel Eigenvalue Problem. In: Neural Computation, 10:1299-1319, 1998.

B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Müller, G. Ratsch, A. J. Smola: Input Space versus Feature Space in Kernel-Based Methods. In: IEEE Trans. on Neural Networks, 10:1000-1017, 1999.

C. Williams: On a Connection between Kernel PCA and Metric Multidimensional Scaling. In: Machine Learning, 46:11-19, 2002.

K.-R. Müller, S. Mika, G. Ratsch, K. Tsuda, B. Schölkopf: An Introduction to Kernel-Based Learning Algorithms. In: IEEE Trans. on Neural Networks, 12:181-201, 2001.

J. Shawe-Taylor, N. Cristianini: Kernel Methods for Pattern Analysis. Cambridge University Press, 2004.

T. Cox, M. Cox: Multi-Dimensional Scaling. Chapman & Hall, 1994.

Matrix Factorization and Recommender Systems

Matrix Factorization

VT

Key ingredient: Spectral factorization

- Requires dense matrix A
- Low-rank approximations: Largest σ_i only

Low-Rank Factorization

Recommender Systems

Example: Movie recommendations

Sparse Matrix Factorization

VT

Key ingredient: Spectral factorization

- Objective $\|\mathbf{A} \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}\|^2$
- Approximation only (optimum NP-hard)
- Popular: Alternating least-squares

Kernel PCA (& Kernel Learning)

Example: Support Vector Machine

labeled sample

reconstructed density, decision rule

Example

"feature space"

Example Mapping:

$$\mathbb{R}^2 \to \mathbb{R}^3$$
$$(x, y) \to (x^2, xy, y^2)$$

"The Kernel Trick"

Observation:

- Many data analysis algorithms can be expressed in terms of scalar products only
- Scalar products (φ(x), φ(y)) can sometimes be computed efficiently, without explicit mapping
- "Kernel trick": replace standard scalar product with kernel function:

$$\langle \boldsymbol{\phi}(\mathbf{x}), \boldsymbol{\phi}(\mathbf{y}) \rangle = k(\mathbf{x}, \mathbf{y})$$

"The Kernel Trick"

Kernels Design

Kernel Design

- Converting $\phi \to k(\cdot, \cdot)$ is difficult
- Other way round:
 choose k(·, ·) that correspond to useful φ

Mercer kernels

- Conditions for valid kernels
 - Eigenfunctions of positive, symmetric kernels
- Sufficient:
 - Finite positivity property Any matrix of pairwise scalar products of finite point sets is symmetric positive definite

Standard Kernels

Polynomial Kernel

- $k(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \cdot \mathbf{y} + 1)^d$
- Corresponds to multivariate monomials up to degree d

Exponential Kernel

- $k(\mathbf{x}, \mathbf{y}) = \exp(-||\mathbf{x} \mathbf{y}||/2\sigma^2)$
- Corresponds to infinite dimensional feature space

Kernel Algorithms

General Scheme for Kernel Algorithms

input points x₁, ..., x_n

Gram matrix (pairwise scalar products)

information bottleneck

 $\begin{pmatrix} k(x_1, x_1) & \cdots & k(x_n, x_1) \\ \vdots & \ddots & \vdots \\ k(x_1, x_n) & \cdots & k(x_n, x_n) \end{pmatrix}$

kernel algorithms

(c.f. Johnson-Lindenstrauss Lemma: pairwise distances provide less information than vectors themselves)

High-Dimensional Spaces are Weird How Much Information is Contained in Pairwise Distances?

Higher Dimensions are Weird

Issues with High-Dimensional Spaces :

- *d*-dimensional space:
 d independent neighboring directions to each point
- Volume-distance ratio explodes

Higher Dimensions are Weird

More Weird Effects:

- Dart-throwing anomaly
 - Normal distributions gather prob.-mass in thin shells
 - [Bishop 95]

- Nearest neighbor ~ farthest neighbor
 - For unstructured points (e.g. iid-random)
 - Not true for certain classes of structured data
 - [Beyer et al. 99]

Johnson-Lindenstrauss Lemma

JL-Lemma: [Dasgupta et al. 99]

- Point set P in \mathbb{R}^d , n := #P
- There is $f: \mathbb{R}^d \to \mathbb{R}^k$, $k \in O(\varepsilon^{-2} \ln n)$ $(k \ge 4(\varepsilon^{2}/2 - \varepsilon^{3}/3)^{-1} \ln n)$
- ...that preserves all inter-point distances up to a factor of $(1 + \varepsilon)$

Random orthogonal linear projection

• Works with probability $\geq (1-1/n)$

What Does the JL-Lemma Imply?

Pairwise distances in small point set *P* (sub-exponential in *d*) can be well-preserved in low-dimensional embedding

What does it not say?

Does not imply that the points *themselves* are well-represented (just the pairwise distances)

Experiment

Intuition

Difference Vectors

- Normalize (relative error)
- Pole yields bad approximation
- Non-pole area much larger (high dimension)
- Need large number of poles (exponential in d)

