Modelling 1 SUMMER TERM 2020

LECTURE 17

MDS and Dual PCA

A Story about Dual Spaces

Singular value decomposition

V^{T}

PCA and MDS

Task: Reconstruct from Distances

Given:

- Pairwise distances between n points

$$
\mathbf{D}=\left(\begin{array}{lll}
\ddots & & \ddots \\
& \operatorname{dist}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & \\
\because & & \ddots
\end{array}\right)
$$

- Points themselves $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ are not known!

Task:

- Compute ($\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$)

Rough Steps

Classic Multidimensional Scaling (MDS)

- Convert distance matrix into matrix of pairwise scalar products:

$$
\mathrm{G}=\left(\begin{array}{lll}
\ddots & & \ddots \\
& \left\langle\mathrm{x}_{i}, \mathrm{x}_{j}\right\rangle & \\
\ddots & & \ddots
\end{array}\right)=\mathbf{X}^{\mathrm{T}} \mathbf{X}, \quad \mathrm{X}=\left(\begin{array}{ccc}
\mid & & \mid \\
\mathrm{x}_{1} & \cdots & \mathbf{x}_{n} \\
\mid & & \mid
\end{array}\right)
$$

- Take "square root" of G

$$
\mathbf{X}=\left(\begin{array}{ccc}
\mid & & \mid \\
\mathbf{x}_{1} & \cdots & \mathbf{x}_{n} \\
\mid & & \mid
\end{array}\right)=\sqrt{\mathbf{G}}
$$

(Recap from \#2)

Square roots of SPD matrices

- Symmetric positive definite ("SPD") matrix G
- Symmetric
- All eigenvalues positive
- G can be written as square of another matrix

$$
\mathrm{G}=\mathrm{UD} \mathrm{U}^{\mathrm{T}}=(\mathrm{U} \sqrt{D}) \cdot\left(\sqrt{D}^{\mathrm{T}} \mathrm{U}^{\mathrm{T}}\right)
$$

$$
" \sqrt{G} "=\mathrm{U}\left(\begin{array}{ccc}
\sqrt{\lambda_{1}} & & \\
& \ddots & \\
& & \sqrt{\lambda_{1}}
\end{array}\right)
$$

More Details

Notation

Data matrix

$\widetilde{\mathbf{x}}=\left(\begin{array}{ccc}1 & & \mid \\ \tilde{\mathbf{x}}_{1} & \ldots & \tilde{\mathbf{x}}_{n} \\ \mid & & \mid\end{array}\right) d$-dimensional input vectors $\tilde{\mathbf{x}}_{1}, \ldots, \tilde{\mathbf{x}}_{n}$
Centered data matrix

$$
\begin{aligned}
\mathbf{X} & =\widetilde{\mathbf{x}}-\overline{\mathbf{x}} \\
& =\widetilde{\mathbf{X}}-\left(\begin{array}{c}
\frac{1}{n} \sum_{i=1}^{n} \tilde{\mathbf{x}}_{i, 1} \\
\vdots \\
\frac{1}{n} \sum_{i=1}^{n} \tilde{\mathbf{x}}_{i, n}
\end{array}\right. \\
& =\widetilde{\mathbf{X}}\left(\mathbf{I}-\frac{1}{n} \mathbf{1 1}^{T}\right)
\end{aligned}
$$

MDS

Multi-Dimensional Scaling

- Input: $n \times n$ pairwise distances $d_{i, j} \rightarrow$ matrix \mathbf{D}

$$
\widetilde{\mathbf{D}}=-\frac{1}{2}\left[\left(d_{i, j}\right)^{2}\right]_{i, j}
$$

- Compute "Gram matrix"
- Pairwise scalar product matrix of centered vectors
$\begin{aligned} \text { - Explanation } & =\left(\mathbf{I}-\frac{1}{n} \mathbf{1 1}^{T}\right) \widetilde{\mathbf{D}}\left(\mathbf{I}-\frac{1}{n} \mathbf{1 1}^{T}\right) \\ \mathbf{G} & =\mathbf{X}^{T} \mathbf{X} \\ & =(\widetilde{\mathbf{X}}-\overline{\mathbf{X}})^{T}(\widetilde{\mathbf{X}}-\overline{\mathbf{X}})\end{aligned}$ (PCA: XXT)

MDS (2)

Multi-Dimensional Scaling

- Next: Compute eigenstructure of $G=\mathbf{X}^{T} \mathbf{X}$

$$
\mathrm{G}=\mathrm{V}_{\mathrm{G}} \Lambda_{\mathrm{G}} \mathrm{~V}_{\mathrm{G}}^{T} \longleftarrow \text { known! }
$$

- Compare to

$$
\mathbf{X}=\mathrm{U}_{\mathrm{X}} \Lambda_{\mathrm{X}} \mathbf{V}_{\mathrm{X}}^{T} \rightarrow \mathbf{G}=\mathbf{V}_{\mathrm{X}} \Lambda_{\mathrm{X}}^{2} \mathbf{V}_{\mathrm{X}}^{T} \longleftarrow \text { unknown! }
$$

- This means, we get:

$$
V_{X}=V_{G}, \quad \Lambda_{X}=\sqrt{\Lambda_{G}}
$$

- Hence: Reconstruction approach

The Gram-matrix is $\quad \mathbf{X} \equiv\left(\sqrt{\Lambda_{\mathrm{G}}}\right) \mathrm{V}_{\mathrm{G}}^{T} \longleftarrow$ known!

MDS (3)

Multi-Dimensional Scaling

- Reconstruction

$$
\begin{aligned}
& \text { X }:=\left(\sqrt{\Lambda_{G}}\right) V_{G}^{T}
\end{aligned}
$$

- Distance-preserving embedding

$$
\begin{aligned}
\mathbf{x}_{i} & =\left(\sqrt{\lambda_{1}} \mathbf{v}_{1}^{(i)}, \ldots, \quad \sqrt{\lambda_{n}} \mathbf{v}_{\mathrm{n}}^{(i)}\right) \\
& \approx\left(\sqrt{\lambda_{1}} \mathbf{v}_{1}^{(i)}, \ldots, \sqrt{\lambda_{k}} \mathbf{v}_{k}^{(i)}\right)(k \leq n)
\end{aligned}
$$

MDS (4)

Properties: MDS with Euclidian distances

- Recovers points
- Up to global translation
- Up to orthogonal mapping
- Reduced version (k-dim.)
- Preserves distances in a least square sense
- Dimensionality reduction)
- MDS is the dual of PCA
- Result is the same:
- MDS of distance matrix
- PCA embedding centered point coordinates
- Details: next slide

MDS is PCA

SVD of Centered Data Matrix

$$
\mathbf{X}=\mathbf{U} \Lambda \mathbf{V}^{T}=\mathbf{U}\left(\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{\min (d, n)}
\end{array}\right) \mathbf{V}^{T}
$$

Equivalence of MDS and PCA

PGA: $\quad \mathbf{S}=\mathbf{X X} X^{T}=\mathbf{U} \Lambda^{2} U^{T}$
MOS: $\quad \mathbf{G}=\mathbf{X}^{T} \mathbf{X}=\mathbf{V} \Lambda^{2} \mathbb{V}^{T}$
If we know X, we can compute U, too! Not possible from distances/scalar-prod. only.
РСА: $\quad e m b_{P C A}(\mathbf{X})=\mathbf{U}^{T} \mathbf{X}$

$$
\longleftarrow \mathbf{X}^{T}=\mathbf{V} \Lambda \mathbf{U}^{T} \Rightarrow \mathbf{U}^{T} \mathbf{X}=\Lambda \mathbf{V}^{T}
$$

IDS: $\quad e m b_{M D S}(\mathbf{X})=\Lambda V^{T}$

So Where is the Difference?

PCA

input

complexity

result
subspace projection
points
$d \times d$ eigenvalue problem (low dim., large data sets)
data embedding, principal variances, principal axes ("U")
can easily embed additional vectors

MDS
pair-wise distances / scalar products
$n \times n$ eigenvalue problem (high dim., small data sets)
data embedding, principal variances, no principal axes*) not obvious
(yes: Nyström method)
*) Unless we know the original data X.

Nyström Projection

Embedding further Vectors

- Recompute everything
- Expensive
- Inconsistent for some applications (new coordinates)
- "Nyström Formula"
- Compute embedding by linear combination of computed eigenvectors
- Uses projections on input data set (scalar products only)
- Assumes knowledge of point positions (later: measure distances only)

Nyström Projection

Nyström Projection

- Reminder: $\mathrm{X}=\mathrm{U} \Lambda \mathrm{V}^{T} \mathrm{G}=\mathrm{X}^{T} \mathbf{X}=\mathrm{V} \Lambda^{2} \mathrm{~V}^{T}$ $e m b_{M D S}(\mathbf{X})=\Lambda V^{T} \quad e m b_{P C A}(\mathbf{X})=\mathbf{U}^{T} \mathbf{X}$
- Project vector x on principal axes $\mathrm{u}_{1}, \ldots, \mathrm{u}_{d}$: $e m b(\mathrm{x})=\mathrm{U}^{T} \mathrm{x}$

$$
=\left(\begin{array}{c}
\sum_{i=1}^{n} \frac{1}{\lambda_{1}} v_{i, 1}\left\langle\mathbf{x}_{i}, \mathbf{x}\right\rangle \\
\vdots \\
\sum_{i=1}^{n} \frac{1}{\lambda_{n}} v_{i, n}\left\langle\mathbf{x}_{i}, \mathbf{x}\right\rangle
\end{array}\right)
$$

$$
\begin{aligned}
& =\left(\mathbb{V}^{T} \Lambda^{-1} \mathbf{X}^{T}\right) \mathbf{X} \\
& \mathbf{X}=\mathbf{U} \Lambda \mathbf{V}^{T} \\
& \Rightarrow \mathbf{U}=\mathbf{X V} \Lambda^{-1} \\
& \Rightarrow \mathbf{U}^{T}=\mathbf{V}^{T} \Lambda^{-1} \mathbf{X}^{T}
\end{aligned}
$$

Kernel PCA

Support Vector Machines

Kernel Support Vector Machine

Example Mapping:

original space

"feature space"

$$
\begin{aligned}
& \phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
& (x, y) \mapsto\left(x^{2}, x y, y^{2}\right)
\end{aligned}
$$

Kernel PCA

"Kernel PCA is classical scaling in feature space" [Williams 2002]

Main Idea:

- MDS can be easily "kernelized" - just replace scalar product matrix \mathbf{G} with kernel matrix
- No need to deal with feature space explicitly (which might be intractable)
- Will yield PCA anyway (but no eigenvectors)

Kernel PCA

Summary:

- Kernel PCA performs PCA/MDS in feature space using dot products (i.e. kernel evaluations) only
- It gives the same result as MDS

Kernel PCA

Remarks:

- Unlike "real" PCA, it does not output principal axes vectors
- They are in feature space, i.e. usually inaccessible
- Preimages in (low-dim.) input space do not need to exist (there are approximation techniques)
- Even if so, they are difficult to compute...
...and the space is non-linear anyway
(so they do not really help)

Kernel PCA

Complexity:

- Need to solve $n \times n$ eigenvalue problem
- Memory, Time: $\Omega\left(n^{2}\right)$
- Does not scale for large data sets
- Can use approximation techniques
- Idea: Landmark MDS
- Compute embedding on small subset of landmark points (e.g. random subset)
- Use Nyström formula to embed other points

Examples

The (In)famous Swiss Roll?

the roll

poly.kernel (5th order) $\sigma=0.35 \mathrm{D}$

exp.
kernel
$\sigma=0.35 \mathrm{D}$
(centered)

What Else Can You Do?

Image Denoising via PCA:

What Else Can You Do?

Does not work without correspondences:

What Else Can You Do?

Shift invariant comparison kernel:

MDS (Kernel PCA)

Shift invariant comparison kernel:

Co-Occurrence Clustering

3D point clouds

Co-Occurrence Clustering

Spectral Clustering

MDS / Kernel PCA References

B. Schölkopf, A. J. Smola, K.-R. Müller: Nonlinear Component Analysis as a Kernel Eigenvalue Problem. In: Neural Computation, 10:1299-1319, 1998.
B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Müller, G. Ratsch, A. J. Smola: Input Space versus Feature Space in Kernel-Based Methods. In: IEEE Trans. on Neural Networks, 10:1000-1017, 1999.
C. Williams: On a Connection between Kernel PCA and Metric Multidimensional Scaling. In: Machine Learning, 46:11-19, 2002.
K.-R. Müller, S. Mika, G. Ratsch, K. Tsuda, B. Schölkopf: An Introduction to Kernel-Based Learning Algorithms. In: IEEE Trans. on Neural Networks, 12:181-201, 2001.
J. Shawe-Taylor, N. Cristianini: Kernel Methods for Pattern Analysis. Cambridge University Press, 2004.
T. Cox, M. Cox: Multi-Dimensional Scaling. Chapman \& Hall, 1994.

Matrix Factorization and Recommender Systems

Matrix Factorization

Key ingredient: Spectral factorization

- Requires dense matrix A
- Low-rank approximations: Largest σ_{i} only

Low-Rank Factorization

Recommender Systems

Example: Movie recommendations

on average 20
"likes" per user
score $\in[0,1]$
people's taste is highly correlated \rightarrow low-dimensional subspace

Sparse Matrix Factorization

Key ingredient: Spectral factorization

- Objective $\| A$ - UDV ${ }^{\mathrm{T}} \|^{2}$
- Approximation only (optimum NP-hard)
- Popular: Alternating least-squares

$$
\begin{gathered}
\text { Kernel PCA } \\
\text { (\& Kernel Learning) }
\end{gathered}
$$

Example: Support Vector Machine

Example

original space

"feature space"

Example Mapping: $\quad \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$

$$
(x, y) \rightarrow\left(x^{2}, x y, y^{2}\right)
$$

"The Kernel Trick"

Observation:

- Many data analysis algorithms can be expressed in terms of scalar products only
- Scalar products $\langle\phi(\mathrm{x}), \phi(\mathrm{y})\rangle$ can sometimes be computed efficiently, without explicit mapping
- "Kernel trick": replace standard scalar product with kernel function:

$$
\langle\phi(\mathrm{x}), \phi(\mathrm{y})\rangle=k(\mathrm{x}, \mathrm{y})
$$

"The Kernel Trick"

Kernels Design

Kernel Design

- Converting $\phi \rightarrow k(\cdot, \cdot)$ is difficult
- Other way round: choose $k(\cdot, \cdot)$ that correspond to useful ϕ

Mercer kernels

- Conditions for valid kernels
- Eigenfunctions of positive, symmetric kernels
- Sufficient:
- Finite positivity property -

Any matrix of pairwise scalar products of finite point sets is symmetric positive definite

Standard Kernels

Polynomial Kernel

- $k(\mathbf{x}, \mathrm{y})=(\mathbf{x} \cdot \mathbf{y}+1)^{d}$
- Corresponds to multivariate monomials up to degree d

Exponential Kernel

- $k(\mathbf{x}, \mathbf{y})=\exp \left(-\|\mathbf{x}-\mathbf{y}\| / 2 \sigma^{2}\right)$
- Corresponds to infinite dimensional feature space

Kernel Algorithms

General Scheme for Kernel Algorithms

input points x_{1}, \ldots, x_{n}

Gram matrix (pairwise scalar products)

kernel algorithms
(c.f. Johnson-Lindenstrauss Lemma: pairwise distances provide less information than vectors themselves)

High-Dimensional Spaces are Weird

$$
\begin{gathered}
\text { How Much Information } \\
\text { is Contained in Pairwise } \\
\text { Distances? }
\end{gathered}
$$

Higher Dimensions are Weird

Issues with High-Dimensional Spaces :

- d-dimensional space: d independent neighboring directions to each point
- Volume-distance ratio explodes

$$
\begin{aligned}
\operatorname{vol}(r) & \in \Theta\left(r^{d}\right) \\
d & \rightarrow \infty
\end{aligned}
$$

Higher Dimensions are Weird

More Weird Effects:

- Dart-throwing anomaly

$$
d=1 . .200
$$

- Normal distributions gather prob.-mass in thin shells
- [Bishop 95]
- Nearest neighbor ~ farthest neighbor
- For unstructured points (e.g. iid-random)
- Not true for certain classes of structured data
- [Beyer et al. 99]

Johnson-Lindenstrauss Lemma

JL-Lemma: [Dasgupta et al. 99]

- Point set P in $\mathbb{R}^{d}, n:=\# P$
- There is $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}, \quad k \in O\left(\varepsilon^{-2} \ln n\right)$

$$
\left(k \geq 4\left(\varepsilon^{2} / 2-\varepsilon^{3} / 3\right)^{-1} \ln n\right)
$$

- ...that preserves all inter-point distances up to a factor of $(1+\varepsilon)$

Random orthogonal linear projection

- Works with probability $\geq(1-1 / n)$

This means...

What Does the JL-Lemma Imply?

Pairwise distances in small point set P
(sub-exponential in d)
can be well-preserved in low-dimensional embedding

What does it not say?
Does not imply that the points themselves are wellrepresented (just the pairwise distances)

Experiment

dimensionality reduction

Intuition

Difference Vectors

- Normalize (relative error)
- Pole yields bad approximation

- Non-pole area much larger (high dimension)
- Need large number of poles (exponential in d)

